65 research outputs found

    Interferon Consensus Sequence-Binding Protein 8, a Tumor Suppressor, Suppresses Tumor Growth and Invasion of Non-Small Cell Lung Cancer by Interacting with the Wnt/β-Catenin Pathway

    Get PDF
    Background/Aims: Interferon consensus sequence-binding protein 8 (IRF8) belongs to a family of interferon (IFN) regulatory factors that modulates various important physiological processes including carcinogenesis. As reported by others and our group, IRF8 expression is silenced by DNA methylation in both human solid tumors and hematological malignancies. However, the role of IRF8 in lung carcinoma remains elusive. In this study, we determined IRF8 epigenetic regulation, biological functions, and the signaling pathway involved in non-small cell lung cancer (NSCLC). Methods: IRF8 expression were determined by Q- PCR. MSP and A+T determined promotor methylation. MTS, clonogenic, Transwell assay, Flow cytometry, three-dimensional culture and AO/EB stain verified cell function. In vivo tumorigenesis examed the in vivo effects. By Chip-QPCR, RT-PCR, Western blot and Immunofluorescence staining, the mechanisms were studied. Results: IRF8 was significantly downregulated in lung tumor tissues compared with adjacent non-cancerous tissues. Furthermore, methylation-specific PCR analyses revealed that IRF8 methylation in NSCLC was a common event, and demethylation reagent treatment proved that downregulation of IRF8 was due to its promoter CpG hypermethylation. Clinical data showed that the IRF8 methylation was associated with tumor stage, lymph node metastasis status, patient outcome, and tumor histology. Exogenous expression of IRF8 in the silenced or downregulated lung cancer cell lines A549 and H1299 at least partially restored the sensitivity of lung cancer cells to apoptosis, and arrested cells at the G0/G1 phase. Cell viability, clonogenicity, and cell migration and invasive abilities were strongly inhibited by restored expression of IRF8. A three-dimensional culture system demonstrated that IRF8 changed the cells to a more spherical phenotype. Moreover, ectopic expression of IRF8 enhanced NSCLC chemosensitivity to cisplatin. Furthermore, as verified by Chip-qPCR, immunofluorescence staining, and western blotting, IRF8 bound to the T-cell factor/lymphoid enhancer factor (TCF /LEF) promoter, thus repressing β-catenin nuclear translocation and its activation. IRF8 significantly disrupted the effects of Wnt agonist, bml284, further suggesting its involvement in the Wnt/β-catenin pathway. Conclusion: IRF8 acted as a tumor suppressor gene through the transcriptional repression of β-catenin-TCF/LEF in NSCLC. IRF8 methylation may serve as a potential biomarker in NSCLC prognosis

    The Ubiquitin Peptidase UCHL1 Induces G0/G1 Cell Cycle Arrest and Apoptosis Through Stabilizing p53 and Is Frequently Silenced in Breast Cancer

    Get PDF
    Background: Breast cancer (BrCa) is a complex disease driven by aberrant gene alterations and environmental factors. Recent studies reveal that abnormal epigenetic gene regulation also plays an important role in its pathogenesis. Ubiquitin carboxyl- terminal esterase L1 (UCHL1) is a tumor suppressor silenced by promoter methylation in multiple cancers, but its role and alterations in breast tumorigenesis remain unclear. Methodology/Principal Findings: We found that UCHL1 was frequently downregulated or silenced in breast cancer cell lines and tumor tissues, but readily expressed in normal breast tissues and mammary epithelial cells. Promoter methylation of UCHL1 was detected in 9 of 10 breast cancer cell lines (90%) and 53 of 66 (80%) primary tumors, but rarely in normal breast tissues, which was statistically correlated with advanced clinical stage and progesterone receptor status. Pharmacologic demethylation reactivated UCHL1 expression along with concomitant promoter demethylation. Ectopic expression of UCHL1 significantly suppressed the colony formation and proliferation of breast tumor cells, through inducing G0/G1 cell cycle arrest and apoptosis. Subcellular localization study showed that UCHL1 increased cytoplasmic abundance of p53. We further found that UCHL1 induced p53 accumulation and reduced MDM2 protein level, and subsequently upregulated the expression of p21, as well as cleavage of caspase3 and PARP, but not in catalytic mutant UCHL1 C90Sexpressed cells

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    ADAMTS9 is Silenced by Epigenetic Disruption in Colorectal Cancer and Inhibits Cell Growth and Metastasis by Regulating Akt/p53 Signaling

    No full text
    Background/Aims: ADAMTS (disintegrin-like and metalloproteinase with thrombospondin motifs) proteins are extracellular zinc metalloproteinases that play an important role in extracellular matrix assembly and degradation, connective tissue structuring, angiogenesis, and cell migration. Multiple studies suggest that ADAMTS proteins (e.g. ADAMTS9) can act as tumor suppressors. In gastric, esophageal, and nasopharyngeal carcinomas ADAMTS9 is frequently down-regulated by promoter methylation. Whether ADAMTS9 can function as a tumor suppressor gene (TSG) in colorectal cancer is still unclear. Methods: We performed immunohistochemistry, RT-PCR, and qRT-PCR, to examine the expression of ADAMTS9 in colorectal cancer cell lines and primary colorectal cancer tissues. Methylation-specific PCR was also carried out to investigate the promoter methylation status of ADAMTS9. We also explored the functions of ADAMTS9 in colorectal cancer cell lines through in vitro experiments. Results: ADAMTS9 expression was down-requlated or silenced in 83.3% (5/6) of colorectal cancer cell lines, and frequently repressed in 65.6% (21/32) of colorectal cancer tissues. Down-regulation of ADAMTS9 was partially due to promoter methylation. Exogenous expression of ADAMTS9 in colorectal cancer cell lines inhibited cell proliferation and migration through the regulation of cell cycle and apoptosis. In addition, ADAMTS9 prevented the activation of Akt, and its downstream targets in colorectal cancer cell lines. Conclusion: Our findings suggest ADAMTS9 is a TSG in colorectal cancer

    Dickkopf-Related Protein 2 is Epigenetically Inactivated and Suppresses Colorectal Cancer Growth and Tumor Metastasis by Antagonizing Wnt/β-Catenin Signaling

    No full text
    Background/Aims: Aberrant activation of the Wnt/β-catenin signaling pathway plays a key role in the pathogenesis of multiple tumors including digestive cancers. Recent studies have reported that Dickkopf-related protein 2 (DKK2) is epigenetically inactivated in numerous types of cancers and that its gene products exhibit tumor-suppressive properties. However, the biological functions and underlying molecular mechanisms of DKK2 in colon carcinoma remains obscure. Methods: We examined the expression of DKK2 in colon tumor cell lines by RT-PCR and its promoter methylation status in colon tumor cell lines and primary tumors by methylation-specific PCR (MSP). Ectopic expression of DKK2 was measured by RT-PCR prior to the other experiments. To investigate the function of DKK2, we assayed colony formation and cell proliferation, utilized flow cytometric analyses of the cell cycle and acridine orange/ethidium bromide (AO/EB) fluorescence staining for apoptosis, and examined wound healing, transwell migration and tumor growth in vivo. Western blots were used to explore the mechanisms of DKK2 in epithelial- mesenchymal transition and canonical Wnt/β-catenin signaling. Results: We show here that downregulation or silencing of DKK2 was closely associated with the hypermethylation status of its promoter and that DKK2 expression could be restored by demethylation treatment. Methylation of the DKK2 promoter was detected in nearly all tumors and tumor-adjacent tissues, but not in normal colon tissues. Ectopic expression of DKK2 in colon cell lines HCT116 and HT-29 inhibited colony formation and cell viability by inducing cell cycle G0/G1 arrest and apoptosis, and growth of stable DKK2-infected HCT116 cells in nude mice was decreased compared to controls. Furthermore, DKK2 restrained cell migration through partial reversal of epithelial-to- mesenchymal transition and also by downregulating several stem cell markers. Our data further showed that restoration of DKK2 expression resulted in downregulation of active β-catenin and its downstream target genes. Conclusion: DKK2 appears to be a functional tumor suppressor regulating tumorigenesis of colorectal cancer by antagonizing Wnt/β-catenin signaling

    The epigenetically downregulated factor CYGB suppresses breast cancer through inhibition of glucose metabolism

    No full text
    Abstract Background Recent studies suggested the globin family member cytoglobin (CYGB) as a potential tumor suppressor; however, the mechanism by which CYGB suppresses cancer is elusive. We investigated the role and mechanism of CYGB in suppressing breast cancer. Methods CYGB expression was examined by reverse transcription PCR, quantitative reverse transcription PCR and open database analysis. Promoter methylation was examined by methylation-specific PCR. Metabolomics and proteomics were analyzed by gas chromatography-mass spectrometry and isobaric tags for relative and absolute quantitation, respectively. The effects and mechanisms of ectopic CYGB expression in breast cancer cells were assessed with molecular biological and cellular approaches in vitro and with a xenograft tumor model in nude mice. Results CYGB expression was downregulated in breast cancer tissues and cell lines, which was associated with promoter methylation. Ectopic CYGB expression suppressed proliferation, migration, invasion and induced apoptosis in breast cancer cell lines MCF7 (p53WT) and MB231 (p53mt) in vitro, and inhibited xenograft tumor growth in vivo. By proteomics and metabolomics analysis, glucose metabolism was found to be one of the main pathways suppressed by CYGB. The CYGB-expressing cells had lower ATP and compromised glycolysis. Additionally, CYGB suppressed key glucose metabolism factors including GLUT1 and HXK2 in p53-dependent and -independent manners. Restoration of GLUT1 or HXK2 expression attenuated CYGB-mediated proliferation suppression and apoptosis induction. Conclusions CYGB is a potential tumor suppressor in breast cancer that is epigenetically suppressed. The results for the first time suggest that CYGB suppresses breast cancer through inhibiting glucose metabolism, which could be exploited for breast cancer prevention and therapy

    The new 6q27 tumor suppressor DACT2, frequently silenced by CpG methylation, sensitizes nasopharyngeal cancer cells to paclitaxel and 5-FU toxicity via β-catenin/Cdc25c signaling and G2/M arrest

    No full text
    Abstract Background Nasopharyngeal carcinoma (NPC) is prevalent in South China, including Hong Kong and Southeast Asia, constantly associated with Epstein-Barr virus (EBV) infection. Epigenetic etiology attributed to EBV plays a critical role in NPC pathogenesis. Through previous CpG methylome study, we identified Disheveled-associated binding antagonist of beta-catenin 2 (DACT2) as a methylated target in NPC. Although DACT2 was shown to regulate Wnt signaling in some carcinomas, its functions in NPC pathogenesis remain unclear. Methods RT-PCR, qPCR, MSP, and BGS were applied to measure expression levels and promoter methylation of DACT2 in NPC. Transwell, flow cytometric analysis, colony formation, and BrdU-ELISA assay were used to assess different biological functions affected by DACT2. Immunofluorescence, Western blot, and dual-luciferase reporter assay were used to explore the mechanisms of DACT2 functions. Chemosensitivity assay was used to measure the impact of DACT2 on chemotherapy drugs. Results We found that DACT2 is readily expressed in multiple normal adult tissues including upper respiratory tissues. However, it is frequently downregulated in NPC and correlated with promoter methylation. DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine restored its expression in NPC cells. DACT2 methylation was further detected in 29/32 (91%) NPC tumors but not in any (0/8) normal nasopharyngeal tissue samples. Ectopic expression of DACT2 in NPC cells suppressed their proliferation, migration, and invasion through downregulating matrix metalloproteinases. DACT2 expression also induced G2/M arrest in NPC cells through directly suppressing β-catenin/Cdc25c signaling, which sensitized NPC cells to paclitaxel and 5-FU, but not cisplatin. Conclusion Our results demonstrate that DACT2 is frequently inactivated epigenetically by CpG methylation in NPC, while it inhibits NPC cell proliferation and metastasis via suppressing β-catenin/Cdc25c signaling. Our study suggests that DACT2 promoter methylation is a potential epigenetic biomarker for the detection and chemotherapy guidance of NPC
    corecore